
Homework 4
Math 117 - Summer 2022

1) Consider the real vector space V = Rn, and let γ ∈ V ∗. The point of this problem is
to get another interpretation of the dual space in this case.

We mentioned in class that we can “think” of γ as a “row” vector by considering its matrix
representation under the standard basis (it will be a 1 × n matrix, ie a row vector.) Let us
now prove that every row vector gives rise to a linear functional. Let (x1, . . . , xn) be a “row”
vector (ie, a 1 × n matrix) with each xi ∈ R and define the functional φ ∶ V → R by

φ(
⎛
⎜⎜⎜
⎝

a1
a2
⋮
an

⎞
⎟⎟⎟
⎠
) ∶= (x1, . . . , xn)(

⎛
⎜⎜⎜
⎝

a1
a2
⋮
an

⎞
⎟⎟⎟
⎠
) = x1a1 + x2a2 + . . . xnan

First off, convince yourself that this is actually a linear functional

(a) (2 points) Recall that there is a bijection V ∗ = L(V,R) ≃M1×n(R) that sends a linear
map to its matrix representation. Show that this construction above (that sends a 1×n
matrix to the linear functional φ) is just the inverse of this isomorphism. (In other
words, if you start with a linear functional, take its matrix, and then define this new
linear functional as above, you get the original linear functional you started with)

(b) (1 point) Under this identification above, and letting V = R3 what is the row vector
that corresponds to the dual basis vector e∗1? How about e∗3?

Solution:

2) (2 points) Let V, W be vector spaces over F and let T ∶ V → W be a linear map. Prove
that if T is injective, then V is isomorphic to a subspace of W.

Solution:

3) Suppose V is an n-dimensional F vector space and let T ∶ V → V be a linear map.

(a) (3 points) Suppose that T is an isomorphism, and let T −1 denote its inverse. Using
our definition of determinant of T, prove that det(T −1) = (det(T ))−1 (Hint: what is
the determinant of the identity map?)



(b) (3 points) Again using our definition of determinant, Show that T is an isomorphism
⇐⇒ det(T ) ≠ 0. (Hint: for one direction use part a. For the other direction it may
help to use some results we proved in hws about linear maps between vector spaces of
the same dimension . . .)

Solution:

4) (3 points) Let V be an F vector space of dimension n. Prove that, for k ≤ n the vectors
v1, v2, . . . , vk are linearly independent in V ⇐⇒ v1 ∧ v2 ∧ ⋅ ⋅ ⋅ ∧ vk ≠ 0 in ⋀k(V ) (Hint: extend
basis....)

Solution:

5) Let V be 3 dimensional with basis B = (e1, e2, e3), and let φ ∶ V → V be a linear map

(a) (3 points) Prove that there exists a linear map Tr(φ) ∶ ⋀3(V )→ ⋀3(V ) that sends the
simple tensor

Tr(φ)(e1 ∧ e2 ∧ e3) = φ(e1) ∧ e2 ∧ e3 + e1 ∧ φ(e2) ∧ e3 + e1 ∧ e2 ∧ φ(e3)

We call this map the trace map of φ, and we call the resulting number that scales the
basis vector e1 ∧ e2 ∧ e3 the trace of φ

(b) (3 points) Consider the case V = R3 with standard basis. View the 3x3 matrix

A =
⎛
⎜
⎝

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞
⎟
⎠
∶ R3 → R3

as a linear map and verify that our definition of trace lines up with the usual one.

Solution:

Remark: There is of course nothing special about the n = 3 case: One can define the trace
operator for an n-dimensional vector space just as easily, as the following sum:

Tr(φ)(e1 ∧ e2 ∧ ⋅ ⋅ ⋅ ∧ en) ∶=
n

∑
i=1

e1 ∧ ⋅ ⋅ ⋅ ∧ φ(ei) ∧ ⋅ ⋅ ⋅ ∧ en

Page 2



Then one can pretty easily show that all the usual properties of trace hold using this defini-
tion:
NOT FOR CREDIT, JUST FOR YOUR OWN AMUSEMENT: Show the follow-
ing: For φ1, φ2 ∶ V → V linear maps from V to V we have

(a) Tr(φ1 + φ2) = Tr(φ1) + Tr(φ2)

(b) Tr(φ1 ○ φ2) = Tr(φ2 ○ φ1)

(c) Convince yourself that (b) proves that the Trace is independent from choice of basis

(d) Is it true that Tr(φ1 ○ φ2) = Tr(φ1)Tr(φ2)?

6) (3 points) Let V be an inner product space (over C or R), with an orthonormal basis
B = (v1, v2, . . . , vn) and let T ∶ V → V be linear. Prove that

[T ]B = [T ∗]
tr

B

(That is, the matrix of the adjoint of T is the conjugate transpose of the matrix of T)

Solution:
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